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The structure of the positional absorption and its relation to the programing con-
structions is investigated for a particular case by the method suggested in [1].
The paper is related to the investigations carried out in [2 — 5],

1, Let a conflict~controlled system be described by the linear equation

dzldt = A (t)z + B (t)u + C (1) (L1
rTER" ueP, ve(Q

where P and @ are convex compacts in RP and R? ,respectively. We consider the
problem of control over a finite time interval [¢;, ®,], £, <®,. The first playerusesthe
control u € P and attempts to minimize the values f, (z [#,]) of the function f, con-
tinuous on R™, on the trajectories of the system (1.1), The second player uses the con-
trol 2 € Q and persues the opposite goal, We denote by

€9 (t4s Zu) ~?}Jl;1 xomax U)fo(z [ﬁol)=u§gfx} X(gf}l% Ao [%D) (L2
the value of the game at the minimax-maximin j, (z[9,]) (see [2]). Here {U/} and
{V} are the sets of strategies of the first and second player; X (-, ty, #4, U) and X (-,
ty, T¢, V) are the sets of all motions from the position (s, =4), generated by the stra-
tegies U and V,respectively, and defined as uniform limits of the Euler broken lines
[2]. The function ¢, (¢, z) can be found in the following manner [1]. We define on the
space C (An), Ap = [#5, ®,] X R™ the operator T' and the function e° as follows:

€% (Lyr Ty) = min fo ()
(e 20) = (001, T Bal} G(Bo, Lor %ay DN °

TN 20 = M T o G, tam oy .2
(te, ) € A, g€ C (A,)). Here {v (+), [ts, Bol} is the set of all measurable functions,
{te, Do) — Q and G (2, L4, 24, v (+)) is the set of all points
Pt reu(s), (v-)=X( t) 2. +
X (t,E)[BE)u(E)+C(E)v(E)ldE
[t., t]

(X (¢, &) is the fundamental matrix of the solutions of (1, 1)), when u () traverses the set
{u (), [ts, ®ol} of all measurable functions [z,, @,) — P. The function ¢, is a monoton-
ous limit of the sequence e® ke Ny = {0, 1, ...} defined by the condition e{*) =
I'* (¢°), where I'* is the correspondmg power ofl' co (8 z) = limg $ ™ (4, 2), (¢, 2) €
An.

Cases are known in which ¢o can be found using a finite number of iterations, i. e, ¢4=
(k) for some k & N, The aim of this paper is to analyse a specific example of the sys-
tem (1. 1), in which for each k there exists a position in which ¢ (¢, ) = & (¢, z), as
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well as a position such that ¢o (¢, z) == &'® (¢, z) for all k.
Let us consider the system

deldt = u4», u€P = [—1, 41}, vEQ = [-2, {2] (1.3)
fo (*) = miny, |2 — m| =d (z, M)
M= (—Ooy "—1] U [19 °°)1 ly = 01 ﬁﬂ =1

We denote by Ey, for every k € N, , the set of all positions (¢, z) € A,, A; =10, 1] X
R for which ¢, (¢, =) = &\") (¢, ), and by E_ the set of all positions (¢, ) € A; for
which ¢ (2, z) # ¢ (¢, z) for all k € N,. We investigate the structure of the sets E,
and E, ,establish that the set Ey  \ E, is nonempty for every k& No and that Eis
nonempty, and elucidate the character of the passage from Eqto E .

2. Letus determine the function e® for the system (1, 3). We write
Ml = (—00, _1]) Mﬂ = [11 °°)
d (Kl’ Kg) == ianl ian2 | r—y I
(K C R, Kz.C RY, Ky @, K, &= @)
Then
d(z, My) = max (0, z + 1), d (z, My) = max (0, { — z)
d (G (17 tys Tuy © ())’ M) =
min d (G (1, tx, T4, ¥ (*)), My), i = 1,2

(r E Rl! v () E {v ('), [t*1 1]}1 (t#’ x#) e Al)

It can be shown that for every v (:) € {» (-), [t, 1]}
zot+ | v(®aE) 2.1

[te, 1]
Taking into account (2, 1) we find, that for any position we have

d (G, ta, T, v (), M)=max (0,24 —

€° (ty, ®y) = max <0, te — max [0, | zy | —2 (1— ) (2.2)

Let us denote by L, the set of all positions (¢, z) & Ay for which &° (¢, z) > 0. From
(2.2) it follows that Lom (6 9): (6 2) € O, 1] X BV, | ] < 2 1) 2.9)
To find  ¢g (tys Zx), (tes T4)EA,; we introduce the number b, = max (0, | z4 | — (1—
ty)) and the set S, ={(t,2) : (1, )=A1, | x| < by + (41— #)}. It can be shown that S,
is z-stable [2], and this implies that the strategy v, of the second player extremal to
Sa guarantees that the inequality d (z [1], M) > max (0, 1— by4), is true on every mo-
tion z[-]1 = X (-, te %x, V). The last inequality with (1. 2) taken into account,yields
the inequality ¢g (I4, *s) > min<d, max [0,2— (#& -+ | x4 DI>. The converse inequality
follows from the fact that in the course of forming the Euler broken lines generated by
any strategy V the second player may encounter the realization y (.) & {u (-), [t 11},
for which u (¢) = sign (24) for all ¢ & [4, 1]. Therefore we have

¢o (t4, z4) = minc1, max [0, 2= (t, + |z, )]> (2.4
From (2. 2) and (2.4) it follows that
Eo={{t,a): (t, ) € Ay, |z| 2> 2 (1—1)} (2.5)
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We can confirm by induction that for every ke Ny for all (t,2) & Ae® (¢, 2) = &™)
(t,—=z). Moreover, the following lemma holds.
Lemma 1, Foranyk e N,,every position (¢, z) & Ly, Ly = {(1, y) : (., ) € Ay,
e® (1, y) > 0} and any number b < [0, 1]
e® (1, bz + (1— b)(—2)) > ® (1, 2)

Let (ax)yen, denote a sequence for which ¢ = 2 and

Byy = 2ar/(1 + ax) (2. 6)
for all k & Ny. It can be verified that the sequence is defined correctly (ax + 1= 0,
k & N,) and has the following properties:

1°, For every ke= No, ax > 1; 2°. For every k & Ng» g, < ag; 3°. The limit

limgay = 1 exists,

Let us set
S={t2):( 2)=[0,1) X R, |z|<1— 1} (2.7

Lemma 2. For any (&, z,) = S;and k & Noe® (24, 24) = o (s, 24).

To prove this, it is sufficient to show, by virtue of (2. 4), that for all (ty, z4) 5, k =
Ng, e\ (fg, z4) < 1. For k = 0 this follows from (2, 2), and the rest is proved by induc-
tion, Lemma 2 implies that § C E.

Lemma 3, Forevery k & N, ,the set E; is defined by the condition

Ex={ta):(t2)e Ay, |2]| > a (1— 1)}
Scheme of the proof. For k= 0 the lemma follows from (2. 5). Let
Ey={t2):( 2) =, |z| > e (1— 1)} (2.8)
for all ;= {0, ..., m}, where m = N,. Then, with Lemma 2 taken into account, we
have Eqm CEp,, C8=ANS (2.9)
Let (ty, z4) = S¢\E,, and
%o (t) = zy — sign (zy) (¢ — tx)

20 () = z, —3 sign (z4) (¢t — t)

A

—(ty + |z _
a, — (4| «l) F ot -

L S 1

1° =

for every ¢ = [t,, 1]1. Then we can show that ® € (t, 1) and 7 = [¢,, 1]. Consider
the following cases:

1°' IZ‘,.,I} am+1 (1— t*)’ 20‘ Ix#l < am+1 (1— t*)y Lx < 0.

1°, Using (2. 8) we can confirm that # > ¢°, (£, 7y (¢)) & Em, 2° () =— zo(f),
|z (F)]==1z4|/2 and, that for the program control v,(-) of the second player satisfying
the equality v, (f) = — 2 sign (z4) the relation G (f, t,, zy, va(+)) = [— 1z¢ () lss

| 2o (£) 1] holds, Moreover, we have cq (¢, Zp (1)) = ¢o (tay Zx) = 2— (ty + |24 ), t &
[%4, 1], and this implies, by virtue of Lemma 1, that
min &™) (¢, y) > co (te, 74) G @, ty, Zar 20 () (2.10)
From (2. 10) it follows that (e, Z4) € Epy g0
2°, In this case we have ¥ < ¢°. We assume that cg (24, z4) = g (m+1) (te, z4)-
Then for any ¢* < [t,, 1] and »*(-)={v (-), [#4, 1]} it follows from the condition
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(m) (% o (M)
e t*, x)=¢ by, T 2,11
oo, 1R iy (t*, @) (Bxr %) ( )

that t* > £ and »* (f) = 2 almost everywhere onfz,, t*], 2° (t*)= G (1%, ty, x4, v*(-))
But in this case a° (£*) > — x4 (%), co{t*, 2°(2*)) < ¢y (fx, #4) and (see (2. 11)) we have
gD (1., 2,) < ¢p (4, 74) which contradicts the assumption, Thus (see (2. 9)) we have
proven that
Epy ={{t, @ (6 9) € Ay, |2 200y (1— o}
Taking into account (2. 6) and (2.7) as well as Lemmas 2 and 3, we can show that the
following theorem holds.
Theorem. Sets Eg, k& Ny and E_ are defined by the conditions
Ex={(t, @) (t, ) & Ay, 2] 2> ap (1— 1)}
E,=8={t, z): (t, ) = [0, 1) X R }z| < 1— 1}

The author thanks N, N, Krasovskii for constant attention and valuable advice.

REFERENCES

1. Chentsov, A, G, , On the structure of a game problem of approach, Dokl. Akad.
Nauk SSSR, Vol, 224, N2 6, 1975,

2, Krasovskii,N,N. and Subbotin, A, I, , Positional Differential Games,
Moscow, " Nauka" , 1974,

3., Krasovskii, N.N, and Subbotin, A, I, , On the structure of game prob=-
lems of dynamics, PMM Vol, 35, N 1, 1971,

4, Pontriagin, L, S, , On the linear differential games, 1. Dokl, Akad, Nauk S$3R,
Vol, 174, N 6, 1967,

5. Pshenichnyi, B, N, , The structure of differential games, Dokl, Akad. Nauk

SSSR, Vol, 184, N 2, 1969, Translated by L, K.

UDC 531,36
STABILITY IN FIRST APPROXIMATION OF STOCHASTIC SYSTEMS WITH AFTEREFFECT

PMM Vol.40, N¢ 6, 1976, pp.1116-1121
L, E, SHAIKHET
{Donetsk)
{Received December 9, 1975)

The theorem on existence of the Liapunov functionals and the theorem on sta-
bility in first approximation for a stochastic differential equation with afteref-
fect are proved,

The suggestion of the replacement of Liapunov functions by functionals [1]
in the investigation of the stability of ordinary differential equations with lag,
has been widely utilized in dealing with determinate systems, as well as in the
case of linear and nonlinear stochastic systems (see,e.g. [2— 11]). Resuits
concerning the stability in the first approximation were obtained for stochastic
systemns in [12 — 18] and others, Use of Liapunov functionals for the differential
equations with aftereffect was first encountered in [1, 19, 20] where the inver-
sion theorems were proved and conditions for the stability in first approximation



