
UDC 62-50 

AN EXAMPLE OF AN IRREGULAR DIFFERENTIAL GAME 

PMM Vol. 40, N: 6, 1976, pp. 1113-1116 

A. G. CHEN TSOV 
(Sverdlovsk) 

(Received November 3, 1975) 

The structure of the positional absorption and its relation to the programingcon- 
structions is investigated for a particular case by the method suggested in [l]. 

The paper is related to the investigations carried out in [2 - 53. 

1. Let a conflict-controlled system be described by the linear equation 

dxldt = A (t)x + B (t)u + c (t)v (1.1) 
xER”, UEP, vEQ 

where P and Q are convex compacts in Rp and Rq , respectively. We consider the 

problem of control over a finite time interval [to, tto], to <S,. The first playerusesthe 
control u E P and attempts to minimize the values f0 (I [6,]) of the function f. con- 
tinuous on R*, on the trajectories of the system (1.1). The second player uses the con- 

trol v E Q and persues the opposite goal. We denote by 

c0 (t*, r+) = min (c;) x( ?a: u) fo(r [f&l) = ma= min fo (x teal) (1.2) 
. . I. .I tw xc., h, X*9 V) 

the value of the game at the minimax-maximin f. (X [So]) (see [Z]). Here (U} and 
{ V} are the sets of strategies of the first and second player ; X (. , t*, x*, U) and X (. , 

t*, X*3 V) are the sets of all motions from the position (t*, xd, generated by the stra- 
tegies u and V , respectively, and defined as uniform limits of the Euler broken lines 
[2]. The function co (t, z) can be found in the following manner [l]. We define on the 

space c (An), An - [to, 6,l X Rn the operator I’ and the function a0 as follows: 

a0 ($9 52) = max min to (4 
{DC*), [L, 801~ o(80, L %, ‘J(e)) 

(r (q)) (t*, x*) ~= max max min g (L 2) 
It., %I to;.), [L 801) o(t, L ~a, 0 (. )) 

(t*, x*) E A.,, gE C (An)). Here {v (ah [t*, 601) is the set of all measurable functions, 

[t*, +,,I - Q and G (t, t;, % 2, (*)) is the set of all points 

cp (L t,, x*, u (*), (V’)) = X (t, t*) x* + 

s X (G 4) [B (4) u (E) + C (4) v (01 dS, 
CL. t1 

(X (t, 8 is the fundamental matrix of the solutions of (1.1) ), when u (.) traverses the set 
{u (*), [t*, e01) of all mey.t;apefytions It*, 601 -t P. The function co is a monoton- 
ous limit of the sequence e , n={O,i, . . .} defined by the condition a(&) = 
I” (co), where rk is the corresponding power of E CO (t, X) = limk f e(‘) (t, x), (t, x) E 

Cases are known in which CO can be found using a finite number of iterations, i. e. co= 
a(k) for some k E No.The aim of this paper is to analyse a specific example of the sys- 

tern (1. l), in which for each k there exists a position in which CO (t, x) = eck) (t, z), as 
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well as a position such that co (t, 5) # etK) (t, Z) for all TV. 
Let us consider the system 

dxldt = u + v, u E P = [-1, +l], u E Q = [-2, +2] (1.3) 
f. (2) = minAl 1 x - m J = d (x, M) 

M = (-30, -11 u iI, 001, to = 0, 60 = 1 

We denote by Ek, for every k E No, the set of all positions (t, X) E AI, A1 = 10, I] X 

R1 for which cs (t, Z) = e’“’ (t, CC), and by E, the set of all positions (t, 5) E A1 for 
which CO (t, CC) # E (k) (t, x) for all k E No. We investigate the structure of the sets E, 

and E,, establish that the set E k+I \ E, is nonempty for every k e No and that E, is 
nonempty, and elucidate the character of the passage from E. to E,. 

2. Let us determine the function e” for the system (1.3). We write 

Then 

Ml = (-co, -11, Jf, = [I, 00) 
d (K,, K2) = infK, inf,? 1 5 - y 1 

WI C R=, Ka C RI, KI + 0, K, + 0) 

d (I, M,) = max (0, I + i), d (x, M,) = max (0, 1 - 5) 

d (G (1, t*, G, ‘u (.)), M) = 
mind (C (1, t*, x*, v (.)A M,), i - 1,2 

(+ E R1v 21 (.I E {v (*I, (I*, 111, (fr, x*1 E A,) 

It can be shown that for every u (+) E (V (.), [t*, i]) 

d (G (1, t,, r*, 0 (e)), M) = max (0, t, -/x.+It~l,U(E)dSI) 
*, 

(2.1) 

Taking into account (2.1) we find, that for any position we have 

e” (t*, x*) = max (0, t* - max 10, 1 x* I-2 (I- t*)]> (2.2) 

Let US denote by Lo the set of all positions (I, X) E Al for which E’ (t, I) > 0. From 
(2.2) it follows that 

Lo = {(t, x) : (t, 2) E (0, 11 x R1, 1 x 1 < 2- t) (2.3) 

To find co (t*, I*), (t*, x&A, we introduce the number b, = max (0, 1 X* 1 - (I- 

t*)) and the set S* ={(t, x) : (t, z)EA,, 1 x 1 < b* + (I- t)}. It can be shown that S* 
is z-stable [2], and this implies that the strategy V+ of the second player extremal to 

,S* guarantees that the inequality d (x [I], AT) > max (0, 1-- be), is true on every mo- 

tion x1.1 e X (9, t*, x*, V,) . The last inequality with (1.2) taken into account,yields 
the inequality co (t*, I*) > min<l, max [0,2- (t* + I x* I)]>. The converse inequality 
follows from the fact that in the course of forming the Euler broken lines generated by 
any strategy V the second player may encounter the realization U (.) E (U (.), [t*, I]}, 
for which u (t) = sign (z*) for all t E [t*, 11. Therefore we have 

CO (L x*) = min<l, max [O, 21- (t* + 1 X* I)]) (2.4) 

From (2.2) and (2.4) it follows that 

Eo = {(t, 2): (t, 2) E AD 1% I > 2 (I--t)) (2.5) 
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We can confirm by induction that for every k E No for all (t, 2) E h,e@l (t, z) = s(k) 

(t. -z). Moreover, the following lemma holds. 

Lemma 1. For any k E No, eW2l-y POSitiOn (t, 2) E Lk, Lk = ((2, y) : (% y) = A,, 
e@) (7, y) > 0) and any number b E 10, i] 

s(l’) (4 bx -I- (I- b)(-x)) 2 e(‘) (t, x) 

Let (Uk)&N, denote a sequence for which as = 2 and 

ak+l = %Zk/(i + ak) (2.6) 

for all k E No. It can be verified that the sequence is defined correctly (IQ -I- 1 # o, 

k E Ns) and has the following properties: 
1”. For every kE No, ak > 1; 2’. For every k E No, af+l < ak; 3’. The limit 

Iimkak = 1 exists. 
Let us set 

s = {(t, x) : (t, x) E [O, 1) x R’, 1x1 d I- t) (2.7) 

Lemma 2. For any (t*, z*) E 6’9 and k E. No eik) (t*, 4 # CO (b, G). 

To prove this, it is sufficient to show, by virtue of (2.4), that for all (tz, x1) E S, k E 

No, et”’ (t*, z*) < 1. For k = 0 this follows from (2.2), and the rest is proved by induc- 
tion. Lemma 2 Implies that S c E,. 

Lemma 3. For every k E No , the set Ek is defined by the condition 

El, = {(t, 2) : (t, I) E Al, 12 1 > Uk (I-- t)} 

Scheme of the proof. For k = 0 the lemma follows from (2.5). Let 

Er = {(t, 2) : (t, 2) E Al, 15 I > a[ (I- t)} (2.8) 

for all I E (0, . . ., m}, where m E No Then, with Lemma 2 taken Into account, we 
have 

Em c J%+i c SC = Al\ S (2.2) 
Let (t*, z*) E SC \ E, and 

z. (t) = z* - sign (z*) (t - t*) 

ti (t) = x* -3 sign (z*) (t - GfJ 

$0 = 
% -P* + I x* I) 

a 
m -- 1 

t++y 

for every t E [t*, 11 , Then we can show that to E (t*, 1) and f E [t*, I]. Consider 
the following cases: 

1’. I%* I > %a+1 (I- t*)1 2”. Ix* I < a,+1 (i- td, I* < 0. 
1’. Using (2.8) we can confirm that f > to, (T, z. (t)) E E,, 9 Q =- zo(& 

)zo (f) I = I x* I 12 and, that for the program control vo( a) of the second player satisfying 

the equality u. (t) = - 2 sign (z*) the relation G (t’, t*, +,, v,,(.)) = [- I x0 (t) I*, 
I z. (f) II holds. Moreover, we have CO (t, 20 (0) - CO (t*, z*) = 2- (t* + Ijc, I), t E 
It*, 11 , and this implies, by virtue of Lemma 1, that 

min P) (t, Y) > CO (t*, zt) , G (I, t*, x*, uo (*)) 
(2.10) 

From (2.10) it follows that (t*, z+) E E,,,+p 
2”. In this case we have I < to. We assume that co (t*, x*) = e(“‘+a (t*, x*). 

Then for any P E [t*, 11 and v*(.)E{v (e), [t*, 11) it follows from the condition 
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min ,m (t”, s) = E(m+l) tt** T*) (2.11) 
W*, t, x., e*(.)) 

that t* > to and u* (t) = 2 almost everywhere on[t,, t*], 4 (t*)~ G (t*, t,, z*, v*(.)). 

But in this case P (t*) > - z@ (t+), cO(t*, $(t*)) < cg (t*, z*) and (see (2.11) ) we have 

&cm+l) (t*, z*) < cs (t*, z*) which contradicts the assumption. Thus (see (2.9)) we have 

proven that 
E m+r = {It, 2) : (t, 4 E A*, I z I > ‘Lm+l t*- Q> 

Taking into account (2.6) and (2.7) as well as Lemmas 2 and 3, we can show that the 

following theorem holds. 

Theorem. Sets EIr, k es No and E, are defined by the conditions 

Ek = {(t, x) : (t, xf E A,, 1 Z@T 1 > ah (i- t)} 

E, = S = ((1, 2): (t, 2) E [O, 1) x R’ Izj < I-- I) 

The author thanks N. N. Krasovskii for constant attention and valuable advice. 
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The theorem on existence of the Liapunov functionals and the theorem on sta- 
bility in first approximation for a stochastic differential equation with afteref- 
fect are proved. 

The suggestion of the replacement of Liapunov fimotions by functionals [l] 
in the investigation of the stability of ordinary differential equations with lag, 
has been widely utilized in dealing with determinate systems, as well as in the 
case of linear and nonlinear stochastic systems (see, e. g. [2 - 111) , Results 
concerning the stability in the first approximation were obtained for stochastic 
systems in [12 - X3] and others. Use of Liapunov functionals for the differential 
equations with aftereffect was first encountered in Cl, 19, 201 where the inver- 
sion theorems were proved and conditions for the stability in first approximation 


